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Calcium imaging enables parallel recordings of large neuro-
nal ensembles in living animals1–4 and offers the possibility of 
deciphering information propagation, integration, and com-

putation in neural circuits5. For accurate neuron extraction and spike 
inference for further analysis, high-SNR calcium imaging is desired. 
However, owing to the paucity of fluorescence photons caused by 
low-peak accumulations and fast dynamics of in vivo calcium tran-
sients6,7, calcium imaging is vulnerable to noise contamination (that is, 
photon shot noise and electronic noise), especially in cases where high 
temporal resolution is important for analyzing neural activity8.

The most direct way to capture sufficient fluorescence photons 
for high-SNR calcium imaging is to use high excitation dosage, but 
concurrent photobleaching, phototoxicity9,10, and tissue heating11,12 
are detrimental for sample health and photosensitive biological pro-
cesses. More effective strategies include using brighter calcium indi-
cators7,13 and more advanced photoelectric detection techniques14, 
but their performances are still largely restricted in photon-limited 
conditions, such as dendritic imaging and deep-tissue imaging. 
Apart from these physical or biological approaches, data-driven 
methods can offer an alternative solution to recover faithful sig-
nals from degraded recordings and reduce the photon budget of 
calcium imaging. As an advanced signal-processing technique, 
deep learning has been adopted by microscopists and has achieved 
good performance in fluorescence imaging15–18. However, calcium 
transients constitute highly dynamic, nonrepetitive activities, and 
a firing pattern cannot be captured twice. Previous schemes for 
obtaining training ground truth (that is, images without noise con-
tamination or high-SNR images with the same underlying scene as 
the low-SNR image) by extending the integration time or averaging 
multiple noisy frames are no longer feasible, posing an obstacle for 
conventional supervised learning methods.

Here we present DeepCAD, a self-supervised learning method 
for denoising calcium imaging data that achieves over tenfold SNR 
improvement without requiring any high-SNR observations for 
training. DeepCAD is based on the insight that a deep neural net-
work can converge to a mean estimator even though the target image 
used for training is another corrupted sampling of the same scene, 
because the optimal network parameters are approximate to those 
trained with ground-truth images19. In the context of calcium imag-
ing, we explored the temporal redundancy of video-rate (~30 Hz) 
imaging and found that any two consecutive frames can be regarded 
as two independent samplings of the same underlying firing pattern. 
Thus, image pairs composed of two consecutive frames can be used 
for the training of denoising models. Furthermore, the input and 
output data of DeepCAD are designed to be three-dimensional (3D) 
volumes rather than two-dimensional (2D) frames to fully exploit 
spatiotemporal information in the time-lapse stack. We quantita-
tively evaluated our method on both simulated and experimental 
data. We show that such a 3D self-supervised method is effective 
for calcium imaging denoising, and that even calcium fluctuations 
induced by a single action potential (AP) can be restored from 
severely corrupted images. Finally, we released a Fiji-based plugin 
to make our method easy to access and convenient to use.

Results
Self-supervised principle and performance validation. The gen-
eral principle of DeepCAD is schematized in Fig. 1a. The underly-
ing mechanism of our self-supervised strategy is that using noisy 
target images for training produces noisy gradients, but the mean 
gradient on the entire training set is approximately equal to the 
true gradient. Therefore, the training result will not be affected. In 
our network architecture, 3D U-Net20 utilizes the spatiotemporal 
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correlations of calcium imaging in multiple frames using 3D con-
volutional layers (Extended Data Fig. 1), which endows DeepCAD 
with a better denoising capability than 2D architectures or other 
methods21–23 (Supplementary Figs. 1 and 2). Benefiting from the 
self-supervised strategy, a single low-SNR stack composed of about 
3,500 frames is sufficient as a training set. To generate the training 
set, we split two sub-stacks consisting of interlaced frames from the 
original low-SNR stack and extracted 3D tiles from these sub-stacks 
for training (Extended Data Fig. 2). Adjacent image frames con-
tain approximately identical calcium transients if the original stack 
was imaged at ~30 Hz, which is widely accessible for most com-
mercial or customized microscopes. After training, interpretable 
features are learned (Extended Data Fig. 3) and the model can be 
applied to subsequent acquisitions without additional training 
(Fig. 1b). Although we trained the DeepCAD network on a specific 

combination of spatial and temporal resolutions, we found that it 
had acceptable performance on various spatial and temporal resolu-
tions (Supplementary Figs. 3–5), illustrating the scalability and gen-
eralization for various applications of DeepCAD.

To quantitatively evaluate the performance of DeepCAD, we first 
validated it on simulated calcium imaging data of different SNRs and 
synchronous simulated noise-free recordings as ground truth for 
comparison (Supplementary Figs. 6 and 7 and Supplementary Notes 
1 and 2). We used the constrained non-negative matrix factorization 
(CNMF) algorithm24 for neuron extraction. After denoising with 
DeepCAD, more active neurons can be detected, especially when SNR 
is low (Fig. 1c). We also quantified the accuracy of neuron extraction 
using F1 scores and observed substantial improvements across a wide 
range of intersection-over-union (IoU) thresholds (Fig. 1d,e). For a 
typical IoU threshold of 0.7, the segmentation accuracy was improved 
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Fig. 1 | General principle and validation of DeepCaD. a, Self-supervised training strategy of DeepCAD. Consecutive frames in the original low-SNR 
stack are divided into two sub-stacks, which are then used as the input volume and corresponding target volume to train the deep neural network (3D 
U-Net20). After training, a denoising model can be established and memorized in network parameters. Scale bar, 50 μm. b, Deployment of the DeepCAD 
model. For subsequent acquisitions, a 3D (x–y–t) window traverses the entire stack, and 3D tiles are sequentially fed into the pretrained model. Denoised 
recordings will be obtained after processing by the model. Scale bar, 50 μm. c, The number of neurons extracted at different imaging SNRs before and 
after the enhancement of DeepCAD. n = 120 active neurons were simulated in the field of view (FOV). d, Accuracy of neuron segmentation quantified 
with F1 score at different IoU thresholds (imaging SNR = −0.7 dB, indicated by the red dashed line in c). e, Spatial profiles of extracted neurons (imaging 
SNR = −0.7 dB). Correctly segmented regions (true positive) are colored green. Missing (false negative) and extra regions (false positive) are colored red 
and blue, respectively. Neuron extraction was implemented with the constrained non-negative matrix factorization (CNMF) algorithm24. f, Left, Tukey 
box-and-whisker plot showing the distribution of Pearson correlation coefficients with ground-truth traces before and after denoising (n = 120 independent 
traces). Right, increases of the trace correlation. Each line represents 1 of 120 calcium traces. g, Restoration of calcium transients indiscernible from noise 
(gray) by DeepCAD (blue). Traces without noise contamination (red) serve as ground truth for comparison.
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by 2.4-fold (0.84 for DeepCAD compared with 0.35 for the raw data). 
Benefiting from the improved data quality, calcium traces extracted 
from the denoised data possess higher fidelity. To investigate the tem-
poral enhancement of DeepCAD, we extracted calcium traces of all 
neurons in our simulated dataset from both the raw noisy data and the 
enhanced counterpart. The Pearson correlation with the ground-truth 
traces was substantially improved after denoising (Fig. 1f). Even small 
calcium transients can be restored from the original noisy data (Fig. 
1g and Supplementary Fig. 8). These findings suggest that the spa-
tiotemporal enhancement of DeepCAD can improve the accuracy of 
neuronal localization and trace extraction and facilitate the analysis of 
neural circuits.

Spatiotemporal enhancement of single-neuron recording with 
DeepCAD. To verify the effectiveness and reliability of DeepCAD 

on experimentally obtained data, we then demonstrated its perfor-
mance on previously released two-photon calcium imaging data7. In 
this dataset, simultaneous cell-attached electrophysiological record-
ings (Fig. 2a) are synchronized with two-photon imaging and serve 
as reference for calcium transients and as ground truth for spike 
inference. Contaminated by detection noise, both the spatial foot-
print and temporal traces of neurons were severely corrupted in the 
original data (Fig. 2b). After we applied DeepCAD to enhance these 
data, the annular cytoplasms became recognizable and calcium 
traces were liberated from noise (Fig. 2c and Supplementary Video 
1). Even barely perceptible calcium transients evoked by one AP, two 
APs, or three APs were distinguished and maintained their original 
dynamics (Fig. 2d–g), which otherwise would be overwhelmed by 
noise. For further comparison, we extracted single-pixel fluores-
cence from cytoplasmic pixels and found that calcium transients 
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Fig. 2 | spatiotemporal enhancement with DeepCaD. a, Single-neuron electrophysiology. Detected spikes are marked with black dots. b, Two-photon 
calcium imaging data of the same neuron synchronized with cell-attached electrophysiology. Representative frames indicated with orange triangles are 
presented below the trace. Scale bar, 10 μm. c, Fluorescence traces and representative frames after the enhancement with DeepCAD. Scale bar, 10 μm. d–f, 
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Left, Tukey box-and-whisker plot showing the distribution of error rates of spike inference (lower is better) for calcium traces extracted from enhanced data 
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can be unveiled at a single-pixel scale (Supplementary Fig. 9). 
Moreover, we performed spike inference on traces extracted from 
the original data as well as the corresponding denoised data. Due 

to the improvement of SNR, the error rate of spike inference was 
decreased (Fig. 2h, Extended Data Figs. 4 and 5 and Supplementary 
Fig. 10) without aggravating the timing jitters of inferred spikes or 
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deteriorating the spike-rate estimation (Extended Data Fig. 6 and 
Supplementary Fig. 11). Eighty-six percent of 107 independent cal-
cium traces had lower error rates.

DeepCAD facilitates analysis of large neuronal populations. Next, 
we employed DeepCAD for noise removal in calcium imaging data of 
large neuronal populations in awake mice. To obtain high-SNR record-
ings for validation of our method, we designed and built a two-photon 
imaging system with the capability of simultaneous low-SNR and 
high-SNR recording (Extended Data Fig. 7). The high-SNR detection 
path was strictly synchronized with the low-SNR detection path but 
with about tenfold higher imaging SNR (Extended Data Fig. 8), which 
can be used as the reference for our denoising results. We first imaged 
spontaneous neurite activity in cortical layer 1 of a transgenic mouse 
expressing GCaMP6f and found that calcium fluctuations indiscern-
ible in the original low-SNR recordings can be effectively recovered 
by DeepCAD (Fig. 3a–c and Supplementary Video 2). The SNR was 
improved by more than tenfold with DeepCAD and surpassed the 
corresponding high-SNR reference. Fluorescence traces of dendritic 
pixels can be accurately resolved and keep high consistency with the 
high-SNR reference (Fig. 3d,e and Supplementary Fig. 12). We also 
applied DeepCAD to enhance calcium imaging data of somatic sig-
nals. After denoising, neuronal distribution and circuit state can be 
extracted from a single frame (Fig. 3f–h and Supplementary Video 3). 
Using CNMF as the source extraction method, we could extract 52.6% 
(229 compared with 150) more active neurons (Fig. 3i,j and Extended 
Data Fig. 9). Pearson correlation of somatic signals was improved 
from 0.50 to 0.79 (Fig. 3k, median value), and the trace peak SNR was 
also improved by more than twofold (Supplementary Fig. 13), indi-
cating that the functional analysis of large neuronal populations can 
be strengthened owing to improved SNR. Apart from our own imag-
ing system, we also extended DeepCAD to data obtained with other 
two-photon imaging systems. DeepCAD has good generalization and 
scalability and can achieve comparable performance on several differ-
ent imaging systems, regardless of objectives and detectors (Extended 
Data Fig. 10 and Supplementary Video 4).

Discussion
In summary, DeepCAD is a method based on deep self-supervised 
learning for spatiotemporal enhancement of calcium imaging data. 
DeepCAD overcomes the reliance on training ground truth by 
directly training a denoising deep neural network with the origi-
nal low-SNR time-lapse calcium imaging data. We have demon-
strated its denoising performance on single-neuron recordings and 
neuronal-population recordings. To maximize its accessibility, we 
released a Fiji plugin (Supplementary Fig. 14 and Supplementary 
Note 3) and a pretrained DeepCAD model for denoising two-photon 
imaging data of neuronal populations. Our method can be effi-

ciently configured on a common desktop and generalized to other 
imaging systems, making it a compelling tool for calcium imaging 
denoising. Although we validated DeepCAD only on two-photon 
calcium imaging data, we believe it can be extended to other imag-
ing modalities, such as wide-field microscopy, confocal microscopy, 
and light-sheet microscopy, or other functional imaging applica-
tions, such as cell migration observation and voltage imaging. We 
anticipate that this method could serve as a general processing step 
for time-lapse imaging data obtained in photon-limited conditions, 
and could promote long-term and high-fidelity recordings of bio-
logical dynamics.
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Methods
Optical setup. A two-photon imaging system was designed to capture strictly 
synchronized low-SNR and high-SNR calcium recordings for validation of 
our method. Our system was based on a standard two-photon laser scanning 
microscope (2PLSM), and the detection path was specially designed to split 
the fluorescence in a ratio of 1:10. All components of our imaging system are 
commercially available or easy to fabricate. The schematic of the custom-built 
two-photon microscope is shown in Extended Data Fig. 7. At the forefront of 
the optical path, a titanium-sapphire laser system with tunable wavelength (Mai 
Tai HP, Spectra-Physics) was used as the illumination source to emit a linearly 
polarized, femtosecond-pulsed Gaussian excitation beam (920 nm central 
wavelength, pulse width <100 fs, 80 MHz repetition rate). A half-wave plate 
(AQWP10M-980, Thorlabs) was placed to adjust the polarization of the laser beam. 
Then the laser beam went through an electro-optic modulator (350-80LA-02, 
Conoptics) to modulate the excitation power and the half-wave plate was rotated to 
maximize the maximal extinction ratio. A 4f system composed of two achromatic 
lenses (AC508-200-B, Thorlabs) with the same focal length was followed to 
collimate the laser beam. Another 4f system (AC508-100-B and AC508-400-B, 
Thorlabs) with a fourfold magnification was used to expand the laser beam 
and guide the beam into a galvo-resonant scanner (8315K/CRS8K, Cambridge 
Technology) for fast optical scanning. The scanner mount was optimally designed 
for reliable and distortion-free scanning. Then, the beam went through a scan lens 
(SL50-2P2, Thorlabs) and a tube lens (TTL200MP, Thorlabs) and converged into 
a tight focus through a high numerical aperture (NA) water-dipping objective 
(×25/1.05 NA, XLPLN25XWMP2, Olympus). A high-precision piezo actuator 
(P-725, Physik Instrumente) was additionally used to drive the objective for fast 
axial scanning. The beam size at the back aperture of the objective was further 
restricted with an iris set behind the beam expander (L4) to keep the back aperture 
underfilled. The effective excitation NA was about 0.5 in our imaging experiments.

For the detection path, fluorescence excited by the Gaussian focus was 
first collected by the objective. High-NA detection is helpful to detect more 
fluorescence photons and improve the signal intensity. A long-pass dichroic 
mirror (DMLP650L, Thorlabs) was used to separate fluorescence by reflecting 
the fluorescence signals and transmitting the excitation light. A 1:9 (reflectance: 
transmission) non-polarizing plate beam splitter (BSN10, Thorlabs) was then 
placed in the detection path. All fluorescence going through the beam splitter 
will be split into a 10% component (low-SNR path) and a 90% component 
(high-SNR path), propagating in two orthogonal directions and detected by 
two photomultiplier tubes (PMT1001, Thorlabs). A pair of fluorescence filters 
(MF525-39, Thorlabs; ET510/80M, Chroma) was configured in front of each PMT 
to fully block wavelengths outside the emission passband of green fluorescent 
protein (GFP). To improve detection efficiency, we conjugated the back aperture 
of the objective to the sensor planes of the two PMTs using two 4f systems 
(TTL200-A and AC254-050-A, Thorlabs). The two detection paths can record 
synchronized fluorescence signals but with quite different imaging SNR. Although 
the high-SNR recording still suffers from noise, it can be used as the reference to 
identify underlying structures and calcium fluctuations. The maximal FOV of our 
two-photon imaging system is about 720 μm and the typical frame rate is 30 Hz for 
512 × 512 pixels.

System calibration. To confirm the fluorescence intensity ratio between the 
high-SNR detection path and the low-SNR detection path, we imaged 1-μm 
green-fluorescent beads (G0100, ThermoFisher) for system calibration. The bead 
suspension was first diluted and embedded in 1.0% agarose and then mounted 
on a microscope slide to form a single bead layer composed of sparse beads. A 
specified region was continuously scanned to acquire 500 consecutive frames. 
These frames can be regarded as independent samplings of the same underlying 
scene. To reduce the impact of detection noise, we averaged these frames to 
obtain the noise-suppressed image of each path (Extended Data Fig. 8). All 
beads in the FOV were manually segmented and the intensity of each bead was 
calculated by averaging all pixels inside its segmentation mask. According to our 
statistical analysis, the fluorescence intensity of the high-SNR detection path was 
approximately tenfold higher than that of the low-SNR detection path.

Mouse preparation and calcium imaging. All experiments involving mice 
were performed in accordance with the institutional and ethical guidelines for 
animal welfare and have been approved by the Institutional Animal Care and Use 
Committee (IACUC) of Tsinghua University. Mice used in this study were housed 
in cages (24 °C, 50% humidity) in groups of 1–5 under a reverse light cycle. Both 
male and female mice were used without randomization or blinding.

Adult transgenic mice (Ai148D/Rasgrf2-dCre) at 8–12 postnatal weeks were 
anesthetized with 1.5% isoflurane, and craniotomy surgeries were conducted using 
a stereotaxic instrument (68018, RWD Life Science) under a bright-field binocular 
microscope (77001S, RWD Life Science). A custom-made coverslip fitting the 
shape of the cranial window (~6 mm in diameter) was embedded and cemented 
to the skull. A biocompatible titanium headpost was then cemented to the skull 
for stable head fixation. The edge of the cranial window was enclosed with dental 
cement to hold the immersion water of the objective. After the surgery, 0.25 mg per 
g (body weight) of trimethoprim (TMP) was intraperitoneally injected to induce 

the expression of GCaMP6f genetically encoded calcium indicator (GECI) in layer 
2/3 neurons across the whole brain. To reduce potential inflammation, 5 mg per kg 
(body weight) of ketoprofen was injected subcutaneously. Each mouse was housed 
in a separate cage for 1–2 weeks of postoperative recovery.

Imaging experiments were carried out when the cranial window became clear 
and no inflammation occurred. Mice were first rapidly anesthetized with 3.0% 
isoflurane and then fixed onto a custom-made holder with the headpost. The 
mouse holder was mounted on a precision translation stage with three motorized 
axes (M-VP-25XA-XYZL, Newport) to find the region of interest (ROI) for 
imaging. The correction ring of the objective was adjusted to compensate for 
the coverslip thickness and eliminate spherical aberrations. In all experiments, 
the highest excitation power after the objective was ~140 mW to avoid potential 
laser-induced tissue damage. Gaseous anesthesia was turned off and the mice kept 
awake during the whole imaging process. We performed single-plane imaging on 
14 different planes at approximately 80–210 μm below the pia mater. Each plane 
was continuously imaged for 200 seconds. The frame rate was 30 Hz and the FOV 
was 550 × 575 μm (Supplementary Table 1).

Network architecture and training details. The network architecture of 
DeepCAD employs 3D U-Net, which is reported to have superior performance on 
the segmentation of volumetric data20. In general, the network is composed of a 
3D encoder module (the contracting path), a 3D decoder module (the expanding 
path), and three skip connections from the encoder module to the decoder module 
(Extended Data Fig. 1). In the 3D encoder module, there are three encoder blocks. 
Each block consists of two 3 × 3 × 3 convolutional layers, followed by a leaky 
rectified linear unit (LeakyReLU) and a 2 × 2 × 2 max pooling with strides of two 
in three dimensions. In the decoder module, there are three decoder blocks, each 
of which contains two 3 × 3 × 3 convolutional layers followed by a LeakyReLU and 
a 3D nearest interpolation. A group normalization25 layer is configured after each 
convolutional layer. The skip connections link low-level features and high-level 
features by concatenating their feature maps. All operations (convolutions, 
max-poolings, and interpolations) in the network are in 3D to aggregate spatial 
information and temporal information because the spatiotemporal correlation of 
calcium imaging data is a key factor of our method (Supplementary Fig. 15). For 
the loss function, we used the arithmetic average of a L1-norm loss term and a 
L2-norm loss term. Each input stack was normalized by subtracting the minimum 
value and then dividing by the maximum value. The model was trained on 3D tiles 
with a spatial size of 64 × 64 pixels and a temporal size of 300 frames. Small spatial 
size can lower memory requirements and reduce the training time, and large 
temporal size is helpful to make full use of temporal information.

Adam optimizer26 was used for network training, with a learning rate of 
0.00005 and exponential decay rates of 0.5 for the first moment and 0.9 for the 
second moment. We used graphics processing units (GPU) to accelerate the 
training and testing process. It took about 12 hours to train our model for 20 
epochs on a typical training set (about 1,200 3D tiles) with a single GPU (Nvidia 
TITAN RTX, 24 GB memory). On an already trained network, it took 502 seconds 
to process 3,500 frames (512 × 512 pixels). Training and testing time can be  
further shortened by using a more powerful GPU or parallelizing computation on 
multiple GPUs.

Generally speaking, a higher imaging frame rate, higher spatial sampling 
rate and more training frames can lead to better denoising performance 
(Supplementary Figure 16). The full 3D architecture of DeepCAD makes it easy to 
overfit because 3D convolutions usually involve more parameters than does the 2D 
counterpart. The best denoising performance is only achieved at the point where 
there is neither underfitting nor overfitting (Supplementary Figure 17). To screen 
out the model with the best generalization ability, we saved the network snapshot 
after each training epoch and evaluated its performance on a holdout validation 
set. We fed the validation data into each model and calculated the s.d. projection 
of the output stack of each model. Then, the average pixel intensity was calculated 
on unlabeled vascular regions for all standard deviation projections. Empirically, 
the best model tends to be the one with the smallest dark s.d. To avoid ignoring 
the best model, manual inspection is recommended as the final step of model 
screening. A good model often needs several rounds of training and screening.

Data simulation. Our simulation program includes the first step for synthesizing 
the noise-free video (ground truth) and the second step for adding the Mixed 
Poisson-Gaussian (MPG) noise. Firstly, based on the fact that a calcium imaging 
video can be modeled as the product of a spatial matrix and a temporal matrix24, 
the ground-truth video was synthesized using a non-negative matrix factorization 
(NMF) model (Supplementary Note 2). To generate realistic simulated calcium 
imaging data, we constructed a neuron library containing the spatial profiles of 
517 neurons. These neurons were extracted with constrained non-negative matrix 
factorization24 (CNMF) from an experimentally obtained two-photon calcium 
imaging data of a virus-transfected wild-type mouse expressing GCaMP6f (layer 
2/3 at the primary somatosensory cortex). For the spatial component that defines 
the location of each neuron, 120 neurons were randomly selected from the library 
to keep the sparsity of neurons. For the temporal component that defines the 
fluorescence fluctuations of each neuron, MLspike27 was employed to generate 
calcium traces with GCaMP6f kinetics. Then, these two components were reshaped 
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into 2D matrices, and the simulated noise-free data (1 μm/pixel spatial sampling 
rate, 30 Hz frame rate) was synthesized as the product of the spatial matrix and the 
temporal matrix. The noise-contaminated counterpart was ultimately generated by 
adding the content-related MPG noise (Supplementary Note 1). Data with different 
imaging SNRs were simulated with different relative photon numbers and their 
relationship was investigated in Supplementary Fig. 6. All images were saved as 
uncompressed TIF files with the format of unsigned 16-bit integer (uint16).

Single-neuron recordings. The data of simultaneous two-photon imaging 
and electrophysiological recordings of single-neuron activity were released by 
the Svoboda lab28 and were downloaded from the Collaborative Research in 
Computational Neuroscience (CRCNS) platform. Only recordings of GCaMP6f 
neurons were used in this study. The image stacks were fourfold downsampled to 
reduce the sampling rate, and some outlier recordings with very sparse spikes and 
low electrophysiological SNR were excluded. Fluorescence traces were extracted 
from the temporal stacks using manually annotated cytoplasmic and neuropil 
masks. In single-neuron recordings, the neuropil contamination was corrected 
using the formula Fcorrected = Fcytoplasmic – 0.7 × Fneuropil, since DeepCAD can restore 
both the cytoplasmic fluorescence and neuropil fluorescence indiscriminately 
(Supplementary Figs. 18 and 19). For spike inference, we used the MLspike 
algorithm27, which was reported to rank first in the Spikefinder challenge29. All 
traces were divided by their mean values for normalization before being fed into 
the spike inference pipeline. Recommended model parameters for GCaMP6f 
indicator were used to ensure optimal performance of spike inference.

Data analysis of neuronal populations. Calcium imaging data of large neuronal 
populations were first registered with a non-rigid motion correction method30, and 
the black edges of registered images were clipped. Then, CNMF24 was employed 
as the source extraction method for neuron segmentation and trace extraction. 
A spatial matrix and a temporal matrix can be obtained from each video, storing 
the spatial footprints and corresponding calcium traces of all active neurons, 
respectively. The same set of parameters was used for the original low-SNR 
recording and corresponding DeepCAD enhanced counterpart, as well as the 
high-SNR recording. Simulated data were analyzed following the same pipeline 
except for the motion correction step. Along with automatic neuron extraction, we 
also performed manual annotations to inspect our results. High-SNR recordings 
were tenfold downsampled along the time axis by averaging each consecutive 
ten frames, which reduced the disturbance of detection noise and was helpful to 
improve annotation accuracy. Boundaries of all active components were annotated 
using the ROI Manager toolbox of Fiji. The final segmentation masks were 
generated through subsequent morphological operations of images and connected 
domain extraction implemented with customized MATLAB scripts.

Performance metrics. Two types of metrics were used for quantitative evaluation 
of the spatial and temporal performance of DeepCAD. For synthetic calcium 
imaging data, corresponding ground-truth images and calcium traces were 
available. SNR and PSNR were used as the spatial metric to evaluate pixel-level 
similarity between DeepCAD enhanced images and ground-truth images. Pearson’s 
correlation coefficient (R) was used as the temporal metric to reflect the similarity 
between enhanced traces and ground-truth traces. The Pearson correlation 
between signal x and the reference signal y is defined as:

R =
E[(x − μx)(y − μy)]

σxσy

Here μx and μy are the mean values of signal x and y, respectively; σx and σy are the 
standard deviations of signal x and y, respectively; and E represents arithmetic 
mean.

Furthermore, we also evaluated the performance of DeepCAD on the basis of 
more complex downstream tasks such as neuron extraction and spike inference, 
which are the most crucial prerequisites in functional analysis of neural circuits from 
calcium imaging data. We considered neuron extraction as an instance segmentation 
problem and adopted an object-level metric to evaluate the segmentation 
performance of CNMF before and after denoising31. Different intersection-over-union 
(IoU, defined as the intersection area divided by the union area of two objects) 
thresholds were selected to determine correctly segmented objects. For a specified IoU 
threshold, the segmentation accuracy (F1 score) was defined as the harmonic mean of 
sensitivity and precision, which can be formulated as:

F1 =
2TP

2TP + FP + FN

Here TP, FP, and FN are the number of true positives, false positives, and false 
negatives, respectively. When CNMF was applied as the source extraction method, the 
SNR of calcium traces was quantified with the peak SNR automatically calculated by 
the CaImAn toolbox32 with infinite outliers eliminated. For spike inference, we used 
the error rate (ER) to quantify the performance of spike inference, which is defined as 
ER = 1 – F1. Spikes detected from simultaneous electrophysiological recordings were 
used as the ground truth for ER calculation. The evaluation process was implemented 
with customized MATLAB scripts. SNR, PSNR, Pearson correlation coefficient, and 
IoU were computed using built-in functions.

Statistics and reproducibility. All boxplots were plotted in standard Tukey 
box-and-whisker plot format. The box indicates the lower and upper quartiles 
while the line in the box shows the median. The lower whisker extends to the 
first data point greater than the lower quartile minus 1.5× the interquartile range 
(IQR). Similarly, the upper whisker extends to the last data point less than the 
upper quartile plus 1.5× the IQR. Data points outside of the whiskers were plotted 
as outliers with small black dots. Experiments in Fig. 3a–c,f–h were repeated on 
5,000 test frames with similar results. Experiments in Extended Data Fig. 10 were 
repeated on 600 test frames, all achieving similar results.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset of synchronized low-SNR and high-SNR two-photon calcium imaging 
(covering various imaging depths, excitation power, and cell structures) has been 
made publicly available at https://github.com/cabooster/DeepCAD/tree/master/
dataset. The dataset of simultaneous two-photon imaging and electrophysiological 
recording can be downloaded from the Collaborative Research in Computational 
Neuroscience (CRCNS) platform at http://crcns.org/data-sets/methods/cai-1. 
Source data are provided with this paper.

Code availability
Our PyTorch implementation of DeepCAD is publicly available at https://
github.com/cabooster/DeepCAD. The Fiji plugin and the pretrained model for 
denoising of large neuronal populations are readily accessible at https://github.
com/cabooster/DeepCAD/tree/master/DeepCAD_Fiji. Because the plugin is 
only compatible with TensorFlow, a companion TensorFlow implementation of 
DeepCAD is also made publicly available at the same GitHub repository.
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Extended Data Fig. 1 | Network architecture. Our model adopted 3D U-net20, which is composed of a 3D encoder module, a 3D decoder module, and 
three skip connections from the encoder module to the decoder module. In the encoder module, there are three encoder blocks. Each block consists of 
two 3 × 3 × 3 convolutional layers followed by a leaky rectified linear unit (LeakyReLU), a group normalization layer, a 2 × 2 × 2 max pooling with strides 
of 2 in three dimensions. In the decoder module, there are three decoder blocks, each of which contains two 3 × 3 × 3 convolutional layers followed by 
a LeakyReLU, a group normalization layer, and a 3D nearest interpolation. The skip connections can pass feature maps from the encoder module to the 
decoder module to integrate low-level features and high-level features. Feature maps of the encoder module and the decoder module are represented in 
different colors. All operations are in 3D and feature maps are all 4D tensors. 3D (c, t, x) feature maps were used here to simplify representation.
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Extended Data Fig. 2 | Data processing pipeline. a, The training process. Raw data captured by the imaging system are organized in 3D (x, y, t) and 
saved as a temporal stack. The original noisy stack is partitioned into thousands of 3D sub-stacks (64×64×600 pixels) with about 25% overlap in each 
dimension. For temporal stacks with a small lateral size or short recording period, sub-stacks can be randomly cropped from the original stack to augment 
the training set. Then, interlaced frames of each sub-stack are extracted to form two 3D tiles (64 × 64 × 300 pixels). One of them serves as the input 
and the other serves as the target for network training. b, Deployment of the pre-trained model. New recordings obtained with the imaging system are 
partitioned into 3D sub-stacks (64 × 64 × 300 pixels) with 25% overlap in each dimension. Then, pre-trained models are loaded into memory and the 
sub-stacks are directly fed into the model. Enhanced sub-stacks are sequentially output from the network and overlapping regions (both the lateral and 
temporal overlaps) are subtracted from the output sub-stacks. The final enhanced stack can be obtained by stitching all sub-stacks.
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Extended Data Fig. 3 | Interpretability of DeepCaD model. To demonstrate the interpretability and reliability of our pre-trained DeepCAD model, a 
small 3D patch (64 × 64 × 300 pixels) was fed into the model and feature maps of the convolutional layers were visualized33. Scale bar, 20 μm. Example 
feature maps of three intermediate convolutional layers in the decoder module (Layer 10, Layer 12, and Layer 14) are shown here, displayed as the average 
intensity projection (AVG) of the original 3D feature maps. The feature representations learned by DeepCAD have substantial semantic meaning, such as 
soma-like structures, cytoplasm-like structures, and vessel-like structures (or shadows). These interpretable semantic representations would contribute to 
locating neurons, restoring cytoplasmic fluorescence, and avoiding unwanted intensity fluctuations in vascular regions.
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Extended Data Fig. 4 | sNR improvement of calcium traces after denoising. a, Trace SNR before and after denoising. Calcium traces (N = 107) were 
divided into three groups according to input SNR (36 low-SNR traces, 37 medium-SNR traces, 34 high-SNR traces). Quantitatively, low-SNR traces 
are those with SNR < −8.10 dB, medium-SNR traces are those with −8.10 dB≤SNR < −4.71 dB, high-SNR traces are those with SNR ≥ −4.71 dB. b, The 
distribution of trace SNR before and after denoising (N = 36 for low-SNR, N = 37 for medium-SNR, N = 34 for high-SNR). c, SNR improvements at different 
input SNR levels (N = 36 for low-SNR, N = 37 for medium-SNR, N = 34 for high-SNR). The trace SNR was calculated by 10 log(||x | |/||y-x | |2), where x 
is the normalized calcium trace and y is corresponding normalized noise-free trace estimated by MLspike27. Boxplots were plotted in standard Tukey 
box-and-whisker plot format with outliers indicated with small black dots.
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Extended Data Fig. 5 | DeepCaD reduces the error rate of spike inference at different input sNRs. a, The error rate (ER) of raw data and DeepCAD 
enhanced data at different input SNRs. b, The decrements of ER at different input SNRs. Sample size: N = 36 for low-SNR, N = 37 for medium-SNR, N = 34 
for high-SNR. Boxplots were plotted in standard Tukey box-and-whisker plot format with outliers indicated with small black dots.
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Extended Data Fig. 6 | timing jitters of inferred spikes relative to real spikes before and after denoising. a, Boxplots showing the distribution of timing 
jitters relative to real spikes (electrophysiology) of all inferred spike pairs before (N = 2031) and after (N = 2574) denoising. b, Histograms showing the 
probability distributions of timing jitters before and after denoising. The two probability distributions were verified to be equivalent by Kolmogorov–
Smirnov test (one-side, P ≤ 0.01, N = 2031 for raw data, N = 2574 for DeepCAD enhanced). c, Distributions of timing jitters at different input noise levels 
(Raw data, N = 326 for low-SNR, N = 689 for medium-SNR, N = 1016 for high-SNR; DeepCAD enhanced, N = 545 for low-SNR, N = 880 for medium-SNR, 
N = 1149 for high-SNR). d, Distributions of timing jitters at different baseline spike rates (Raw data, N = 663 for low spike rate, N = 766 for medium spike 
rate, N = 602 for high spike rate; DeepCAD enhanced, N = 1095 for low spike rate, N = 837 for medium spike rate, N = 642 for high spike rate). Baseline 
spike rates were calculated with 2 s binning time. All timing jitters were divided into three groups, that is low spike rate (baseline spike rate≤2.0 spk/s), 
medium spike rate (2.0 spk/s <baseline spike rate≤3.5 spk/s), and high baseline spike rate (baseline spike rateå 3.5 spk/s). These timing jitters were 
caused by the spike inference algorithm. Boxplots were plotted in standard Tukey box-and-whisker plot format with outliers indicated with small black 
dots.
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Extended Data Fig. 7 | simultaneous low-sNR and high-sNR two-photon imaging system. Microscope set-up for simultaneous acquisition of high-SNR 
and low-SNR calcium imaging data. Ti:sapp: titanium-sapphire laser with tunable wavelength; HWP: half-wave plate; EOM: Electro-Optic Modulator; M1: 
mirror; L1, L2, L3, L4, L5, L6, L7, L8, L9: lens; Scanner: galvo-resonant scanners; DM: long-pass dichroic mirror to separate fluorescence signals (green path) 
from excitation light (red path); BS: 1:9 (reflectance: transmission) non-polarizing plate beam splitter; PMT1, PMT2: photomultiplier tubes. Fluorescence 
signals were split into a low-SNR (~10%) component and a high-SNR (~90%) component and were synchronously detected by two PMTs.
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Extended Data Fig. 8 | system calibration. a, Example frames captured by the low-SNR detection path (left) and the high-SNR detection path (right). 
There were 15 isolated fluorescent beads (1 μm diameter) in the field of view (FOV). b, Average projection of 500 continuously acquired frames. Scale bar, 
50 μm. c, Intensity profiles (normalized to the maximum of high-SNR recording) along the red dashed lines in b. d, The intensity ratios (high-SNR relative 
to low-SNR) of all 15 fluorescent beads. Each point represents one bead. The average intensity ratio is 10.4 (blue dashed line).
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Extended Data Fig. 9 | Human inspection of segmentation results. a, Left: manually annotated neuron borders. The standard deviation projection served 
as the background image. Right: manually annotated segmentation masks. Scale bar, 100 μm. b, Left: segmentation masks of the Low-SNR recording. 
Right: segmentation masks of the DeepCAD enhanced recording. The constrained nonnegative matrix factorization (CNMF) algorithm24,32 was used as the 
segmentation method. c, Magnified view of the blue boxed region showing the segmentation of three neurons. d, Magnified view of the red boxed region 
showing the segmentation results of five neurons.
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Extended Data Fig. 10 | Cross-system validation. Denoising performance of DeepCAD on three two-photon laser-scanning microscopes (2PLSMs) with 
different system setups. Our system was equipped with alkali PMTs (PMT1001, Thorlabs) and a 25×/1.05 NA commercial objective (XLPLN25XWMP2, 
Olympus). The standard 2PLSM was equipped with a GaAsP PMT (H10770PA-40, Hamamatsu) and a 25×/1.05 NA commercial objective 
(XLPLN25XWMP2, Olympus). The two-photon mesoscope was equipped with a GaAsP PMT (H11706-40, Hamamatsu) and a 2.3×/0.6 NA custom 
objective. The same pre-trained model was used for processing these data. All scale bars represent 100 μm.
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